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Using the Pegg–Barnett formalism of phase operator, we obtain phase probability distri-
butions of new even and odd nonlinear coherent states. It is shown that the distributions
for the states are rather different, and unlike the case of ordinary even and odd coherent
states the Pegg–Barnett distribution clearly reflects the different character of quantum
interference in the case of the new even and odd coherent states.
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1. INTRODUCTION

The idea of nonlinear coherent states (NLCS) has existed in the quantum
optics literature for many years, although in the earlier history other names for
these states were frequently used (for a useful summary, see Dodonov, 2000).
Generally speaking the NLCS may be defined as right eigenstates of deformed
annihilation operatorA. The deformation may take various forms, but a typical
case isA = af (N), wherea is a standard harmonic oscillator annihilation operator
and the deforming functionf (N) is an operator-valued real function of the number
operatorN = a+a (de Matos Filho and Vogel, 1996; Man’koet al., 1997). These
NLCS exhibit nonclassical features like squeezing and self-splitting. A class of
NLCS can be realized physically as the stationary states of the center-of-mass
motion of a trapped ion (de Matos Filho and Vogel, 1996). On the basis of the
work (Man’koet al., 1997), the concept of even and odd NLCS were constructed

1 Department of Physics, Yantai University, Yantai, People’s Republic of China.
2 Department of Physics, Liaocheng University, Shandong, People’s Republic of China.
3 State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Wuhan Institute
of Physics and Mathematics, Chinese Academy of Sciences, Wuhan, People’s Republic of China.

4 Department of Physics, Hubei Normal University, Hubei, People’s Republic of China.
5 To whom correspondence should be addressed at Depatment of Physics, Liaocheng University, Shan-
dog 252059, People’s Republic of China; e-mail: jswanglc@yahoo.com.cn or jisuowang@eyou.com.

2855

0020-7748/03/1200-2855/0C© 2003 Plenum Publishing Corporation



P1: GCR

International Journal of Theoretical Physics [ijtp] pp1044-ijtp-475675 November 12, 2003 1:23 Style file version May 30th, 2002

2856 Wang, Liu, Feng, Sun, and Zhan

by Mancini (1997). A kind of orthogonal even NLCS was introduced by Das
(2000). Recently, a new kind of NLCS was constructed by Roy and Roy (2000)
(referred as Roy-type NLCS hereafter). On the basis of this work, we defined
a new type of even and odd NLCS (Wanget al., 2003), i.e., the even and odd
Roy-type NLCS, and investigated the quantum statistical properties of the states,
including quadrature squeezing, amplitude-squared squeezing, and antibunching
effect. It may be noted that the phase probability distribution is an essential tool
in the study of various phase characteristics. In the present paper, using the Pegg–
Barnett formalism (Barnett and Pegg, 1989; Pegg and Barnett, 1988, 1989) of phase
operator, we discuss the phase probability distributions of the even and odd Roy-
type NLCS. It is shown that the distributions for the even and odd Roy-type NLCS
are rather different, and unlike the case of ordinary even and odd coherent states
the Pegg–Barnett distribution clearly reflects the different character of quantum
interference in the case of the even and odd Roy-type NLCS.

2. DEFINITION OF THE EVEN AND ODD ROY-TYPE NLCS

For convenience of reference and completeness, in this section we begin with
some related results for the NLCS (Man’koet al., 1997) and the Roy-type NLCS
(Roy and Roy, 2000).

The NLCS|α, f 〉 are defined as right eigenstates of the generalized anni-
hilation operatorA = af (N) (de Matos Filho and Vogel, 1996; Man’koet al.,
1997):

A|α, f 〉 = α|α, f 〉, (1)

whereα is a complex number. In the number state basis, the NLCS|α, f 〉 is given
by

|α, f 〉 = C
∞∑

n=0

αn

√
n! f (n)!

|n〉, C =
{ ∞∑

n=0

|α|2n

n![ f (n)!] 2

}−1/2

, (2)

where f (n)! = f (n) f (n− 1) . . . f (1) f (0) and f (0)= 1.
The canonical conjugate of the generalized annihilation and creation operators

A andA+ are given by Royet al. (2000)

B = a
1

f (N)
, B+ = 1

f (N)
a+. (3)

In the number state basis, the Roy-type NLCS (Roy and Roy, 2000) are defined as
the right eigenstates of the new generalized annihilation operatorB,

|β, f 〉 = Nf

∞∑
n=0

βn f (N)!√
n!
|n〉, Nf =

{ ∞∑
n=0

|β|2n[ f (n)!] 2

n!

}−1/2

, (4)

whereβ is an arbitrary complex number.
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In the our previous paper (Wanget al., 2003), we followed the definition of
the even and odd NLCS (Mancini, 1997) (i.e., the eigenstates of the operatorA2)
and defined a new kind of even (+) and odd (−) NLCS (called even/odd Roy-type
NLCS) in a straightforward manner as

|β, f 〉± = N±(|β, f 〉± |−β, f 〉), N± =
{

2± 2N2
f

∞∑
n=0

(−|β|2)n[ f (n)!] 2

n!

}−1/2

.

(5)

By using Eqs. (4) and (5), the even and odd Roy-type NLCS can be expanded in
the number basis as

|β, f 〉± = N±Nf

∞∑
n=0

[r n ± (−r )n] einϕ f (n)!√
n!

|n〉, (6)

whereβ = r exp(iϕ).

3. PHASE PROBABILITY DISTRIBUTIONS OF THE
EVEN AND ODD ROY-TYPE NLCS

In this section we shall examine the phase probability distributions of the
even and odd Roy-type NLCS given by Eq. (6). However, before we proceed any
further, it is necessary to specify the nonlinearity functionf (n). From Eq. (6),
it is clear that for every choice off (n) we shall have the different even and odd
Roy-type NLCS. In the present case we choose the following nonlinearity function
which has been used in the description of the motion of a trapped ion (de Matos
Filho and Vogel, 1996):

f (n) = L1
n(η2)

[
(n+ 1)L0

n(η2)
]−1

, (7)

where η is known as the Lamb–Dicke parameter andLm
n (x) are generalized

Laguerre polynomials (Abramowitz and Stegun, 1972). Clearly,f (n) = 1 when
η = 0 and in this case the even and odd Roy-type NLCS become the usual even
and odd coherent states (Hillery, 1987; Xia and Guo, 1989) respectively. How-
ever, whenη 6= 0 nonlinearity starts developing, with the degree of nonlinearity
depending on the magnitude of the parameterη.

We now turn to the phase probability distributions for the even and odd
Roy-type NLCS given by Eq. (6). According to the Pegg–Barnett phase op-
erator formalism (Barnett and Pegg, 1989; Pegg and Barnett, 1988, 1989) we
start with a finite dimensional (s+ 1) Hilbert space spanned by the number
states|0〉, |1〉, . . . , |s〉. In this space a complete orthonormal set of phase states
|θm〉, m= 0, 1, 2,. . . , s, is defined by

|θm〉 = 1√
s+ 1

s∑
n=0

einθm|n〉, (8)
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whereθm are given by

θm = θ0+ 2mπ

s+ 1
, m= 0, 1, 2,. . . , s. (9)

The value ofθ0 is arbitrary and defines a particular basis in the phase space. In this
space a hermitian phase operator8θ is defined as

8θ =
s∑

m=0

θm|θm〉〈θm|. (10)

For superposition states of the form|ψ〉 =∑∞n=0 bneinϕ|n〉 the phase probability
distribution is given by

|〈θm|ψ〉|2 = 1

s+ 1
+ 2

s+ 1

∑
n>k

bnbk cos[(n− k)(ϕ − θm)]. (11)

Choosingθ0 as

θ0 = ϕ − sπ

s+ 1
, (12)

we obtain from Eq. (10)

|〈θm|ψ〉|2 = 1

s+ 1
+ 2

s+ 1

∑
n>k

bnbk cos

[
(n− k)

2µπ

s+ 1

]
, (13)

Whereµ = m− s/2. The continuous phase probability distributionP(θ ) can now
be obtained as

P(θ ) = lim
s→∞

s+ 1

2π
|〈θm|ψ〉|2

= 1

2π

(
1+ 2

∑
n>k

bnbk cos[(n− k)θ ]

)
, (−π ≤ θ ≤ π ). (14)

For the even and odd Roy-type NLCS given by (6), the continuous phase
probability distributionP±(θ ) is given by

P±(θ ) = 1

2π

(
1+ 2

∑
n>k

(b±)n(b±)k cos[(n− k)θ ]

)
, (−π ≤ θ ≤ π ), (15)

where

(b±)n = N±Nf
[r n ± (−r )n] f (n)!√

n!
(16)

The results of numerical computations of the continuous phase probability distribu-
tion for the even and odd Roy-type NLCS are presented in Figs. 1–4, respectively.
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Fig. 1. Phase distribution of the even Roy-type NLCS
for β = 0.4 andη = 0.3 (curvea), 0.6 (curveb), and
0.8 (curvec).

In Figs. 1 and 2, for the even and odd Roy-type NLCS, we plot the phase
probability distribution againstθ keepingβ fixed (β = 0.4) and using different
values ofη(η = 0.3, 0.6, and 0.8) for the three curves. For the even Roy-type
NLCS, from Fig. 1 we can see that for small value ofη the distribution has only a
central peak atθ = 0 (see curvea). Asη increased the central peak disappears and
four peaks develop atθ = ±π/4, θ = ±3π/4 (see curveb), or two peaks develop
at θ = ±π/2 (see curvec), and these peaks become prominent. Thus the even
Roy-type NLCS quantum interference effects become prominent for relatively

Fig. 2. Phase distribution of the odd Roy-type NLCS
for β = 0.4 andη = 0.3 (curvea), 0.6 (curveb), and
0.8 (curvec).
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large values ofη. On the other hand, for the odd Roy-type NLCS, from Fig. 2
we find that for different values ofη(η = 0.3, 0.6, and 0.8) the distribution has
only a central peak atθ = 0. The qualitative feature of the distribution remains
essentially the same for different values ofη. However, it may be noted that asη
increases the peak structure becomes more and more prominent. In addition, from
Figs. 1 and 2 it is clear that the distribution for the even and odd Roy-type NLCS
are rather different, and unlike the case of ordinary even and odd coherent states
the Pegg–Barnett distribution clearly reflects the different character of quantum
interference in the case of the even and odd Roy-type NLCS.

In Figs. 3 and 4, for the even and odd Roy-type NLCS, we plot the phase
probability distribution keepingη fixed at 0.3 and varyingα(α = 0.2, 0.4, and 0.6).
From the figures it is seen that the phase probability distribution of the even and
odd Roy-type NLCS is the formally same (see Figs. 3 and 4), and the qualitative
feature of the distribution remain formally similar whenη is kept fixed whileβ
varies. However, it may be noted that asβ increases the peak structure becomes
more and more prominent.

4. CONCLUSIONS

It may be noted that the phase probability distribution is an essential tool
in the study of various phase characteristics. In this paper, on the basis of our
recent work (Wanget al., 2003), using the Pegg–Barnett formalism (Barnett and
Pegg, 1989; Pegg and Barnett, 1988, 1989) of phase operator, we investigated
the phase probability distributions of the new even and odd NLCS (i.e., the even
and odd Roy-type NLCS). It is shown that the distributions for the even and odd

Fig. 3. Phase distribution of the even Roy-type NLCS
for η = 0.3 andβ = 0.2 (curvea), 0.4 (curveb), and
0.6 (curvec).
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Fig. 4. Phase distribution of the odd Roy-type NLCS
for η = 0.3 andβ = 0.2 (curvea), 0.4 (curveb), and
0.6 (curvec).

Roy-type NLCS are rather different, and unlike the case of ordinary even and odd
coherent states the Pegg–Barnett distribution clearly reflects the different character
of quantum interference in the case of the even and odd Roy-type NLCS.
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